Плацентарный барьер разделяет. Плацентарный барьер. Барьерная функция плаценты

Под плацентарным барьером понимают избирательные свойства плаценты, в результате которых одни вещества проникают из крови матери в кровь плода, тогда как другие задерживаются или поступают в его организм после соответствующей биохимической переработки.

Барьер, разделяющий кровь матери и плода в межворсинчатом пространстве, состоит из эпителия трофобласта, или синцития, покрывающего ворсинки, соединительной ткани ворсинок и эндотелия их капилляров.

Барьерная функция плаценты может выполняться только в физиологических условиях. Проницаемость плацентарного барьера для вредных веществ и микробов увеличивается при патологических изменениях плаценты, наступившей в результате повреждения ворсинок микробами и их токсинами. Проницаемость плаценты может также повышаться в связи с истончением синцития при увеличении срока беременности.

Обмен газов (кислорода и др.), а также истинных растворов через плацентарную мембрану происходит по законам осмоса и диффузии. Этому способствует разница парциального давления в крови матери и плода. Белки, жиры, углеводы и другие вещества проникают через плацентарный барьер в форме простейших соединений, образующихся под влиянием ферментативной функции плаценты.

В крови матери и плода создается различная концентрация калия, натрия, фосфора и других веществ. Кровь матери по сравнению с кровью плода богаче белками, нейтральными жирами и глюкозой.

В крови плода больше содержится безбелкового азота, свободных аминокислот, калия, кальция, неорганического фосфора и других веществ.

Плацентарный барьер защищает плод от проникновения вредных веществ лишь частично. Через плаценту могут проникать наркотики, алкоголь, никотин, цианистый калий, сульфаниламиды, хинин, ртуть, мышьяк, йодид калия, антибиотики (пенициллин и стрептомицин), витамины и гормоны.

На проникновение веществ из материнской крови в кровь плода большое влияние оказывает величина молекул. При физиологической беременности через плацентарный барьер в кровь плода могут проникать вещества с молекулярной массой ниже 350. При патологии беременности (токсикозы, ионизирующие излучения и др.) в результате нарушения функции плацентарного барьера могут проникать в кровь плода и высокомолекулярные вещества (антигены, антитела, вирусы, токсины, бактерии, простейшие и гельминты).

Еще по теме Плацентарный барьер:

  1. Плацентарный барьер в анестезиологическом плане. Фармакокинетика и фармакодинамика лекарственных средств, используемых в акушерской анестезиологии
  2. Плацентарная недостаточность и токсикоз беременных. Нарушения маточно-плацентарного и плацентарно-плодного кровообращения

Видовые особенности плодной материнской плаценты, пуповины. Что такое плацентарный барьер?

Плацента - это комплекс тканевых образований, развивающихся из сосудистой оболочки плода и слизистой оболочки матки для связи плода с материнским организмом и обеспечивающих обмен веществ между ними. В плаценте различают две части: плодную (сосудистая оболочка плода) и материнскую (слизистая оболочка матки).

Плацента представляет собой уникальное образование, выполняющее одновременно функцию легких, кишечника, почек и эндокринной железы. В плаценте имеются биологические механизмы, способствующие переходу от матери к плоду различных веществ, необходимых для его развития: кислорода, питательных веществ, воды, электролитов, витаминов, антител. Плод передает матери диоксид углерода и вещества -- продукты обмена. Плацента вырабатывает гормоны (гонадотропины, простагландины, эстрогены и прогестерон) и активизирует деятельность энзимов. В ней обнаружены витамины (А, С, D) и многие ферменты, под воздействием которых углеводы, белки и жиры расщепляются, после чего они могут проходить через плацентарный барьер и усваиваться тканями плода.

Строение и структура плодной и маточной частей плаценты у животных значительно варьируют.

У кобыл, ослицы, верблюдицы и свиньи плацента по характеру расположения ворсинок и крипт относится к диффузной, или рассеянной, а по особенностям связи плодной части плаценты с маточной -- к эпителиохориальной. У кобылы хорион напоминает слепок внутренней поверхности беременной матки (рисунок 2). Наружная поверхность хориона бархатистая, равномерно покрытая короткими волосками длиной 1,5...2 мм, врастающими в крипты (углубления) слизистой оболочки матки. Ворсинка состоит из одного слоя эпителия и соединительной основы, содержащей один артериальный и один венозный капилляры. Крипты представляют собой выпячивание однослойного эпителия в толщу слизистой оболочки матки.

Рисунок 2

Схема расположения плодных оболочек у плода лошади:

1 - плод; 2 - амнион; 3 - аллантоис; 4 - хорион; 5 - урахус; 6 - слизистая оболочка матки (материнская плацента)

Связь между плодной и маточной частями плаценты у этих животных слабая, поэтому во время родов послед легко и быстро отделяется без повреждения слизистой оболочки матки и кровеносных сосудов. В связи с этим маточная часть плаценты кобыл, ослиц, верблюдиц и свиней отнесена к типу неотпадающих.

У коров, овец и коз сосудистая оболочка имеет форму двурогого мешка, заполняющего правый и левый рога матки. На наружной поверхности сосудистой оболочки плода, соприкасающейся с маточными частями плаценты (карункулами), развиваются плодовые плаценты (котиледоны). В карункулах имеются углубления -- крипты, в которые входят ворсины котиледонов, обильно пронизанные кровеносными капиллярами. В участках, где сосудистая оболочка не прилегает к аллантоису, поверхность ее гладкая, без ворсинок.

Каждый карункул, соединенный с котиледоном, представляет собой отдельную плаценту (рисунок 2). В связи с этим плацента крупного рогатого скота получила название множественной: число плацент у коров, овец и коз составляет 80...100. Карункулы у коров имеют выпуклую поверхность, а у овец и коз -- вогнутую. В период беременности карункулы у коров достигают размеров куриного яйца и более, выделяясь на поверхности слизистой оболочки матки в виде грибовидных образований, сидящих на ножке. Карункулы рога-плодовместилища более крупных размеров по сравнению с карункулами свободного от плода рога матки.

Плаценту жвачных по характеру связи ворсинок плодной части плаценты с криптами карункулов слизистой оболочки матки относят к типу соединительнотканной, или десмохориальной (рисунок 3). Объясняется это тем, что ворсинки, глубоко погружаясь в крипты карункулов слизистой оболочки матки, плотно соприкасаются с их соединительной тканью вследствие разрушения ее эпителиального покрова протеолитическим ферментом трофобласта.

Рисунок 3

Схема расположения плодных оболочек у плода коровы:

1 - плод; 2 - околоплодная жидкость; 3 - амнион; 4 - аллантоис; 5 - мочевая полость; 6 - хорион; 7 - котиледоны; 8 - плацентарные артерии; 9 - плацентарные вены; 10 - пупочная артерия; 11 -- пупочная вена; 12 - часть плодного пузыря из свободного рога

Рисунок 4

Маточная и плодная части плаценты коровы:

1 - стенка матки; 2 - крипты карункула; 3 - хорион; 4 - кровеносные сосуды хориона; 5 - плодная часть плаценты - котиледон

У сук и кошек хорион имеет овальную форму, ворсинки его расположены только в средней части в виде ремня шириной 2,5...6 см, опоясывающего плодный пузырь; плаценту этих животных называют зональной. В отличие от животных других видов ворсинки хориона у плотоядных глубоко врастают в слизистую оболочку матки (рисунок 5). Под влиянием вырабатываемого ими фермента расплавляется слизистая оболочка матки, в результате чего ворсинки непосредственно прилегают к эндотелию ее сосудов. На этом основании плаценту сук и кошек относят к эндо-телиохориальной и одновременно к отпадающей, так как во время родов происходит частичное отторжение маточной части плаценты, сопровождающееся разрывом ее сосудов и кровотечением. У сук околоплодные оболочки и воды окрашены в зеленовато-бурый цвет в связи с наличием в них пигмента биливердина.

Рисунок 5

Схема плацентарной связи у млекопитающих:

I - эпителиохоральная; II - десмохориальная; III - эндотелиохориальная; IV - гемохориальная; 1 - эпителий слизистой оболочки матки; 2 - эпителий крипты; 3 эпителий ворсины; 4 - сосуды ворсины; 5 - сосуды слизистой оболочки матки; 6 - лакуны


По характеру питания плаценты делят на гистиотрофные и эмб-риотрофные. Гистиотрофная плацента характеризуется тем, что через ее плодную часть всасываются питательные вещества, образующиеся в результате разжижения и растворения тканей ферментами хориона. Такая плацента имеется у приматов, грызунов и плотоядных животных.

Эмбриотрофная плацента у однокопытных, жвачных и всеядных животных. Она получила такое название потому, что маточная часть плаценты продуцирует специфический секрет - эмбриотроф («маточное молоко»). Из эмбриотрофа питательные вещества после воздействия ферментов проникают через хорион в кровь плода.

Пупочный канатик (пуповина). Пуповина имеет вид шнура, состоящего из наружной оболочки, двух пупочных артерий, одной или двух (у жвачных) вен, ура-хуса и остатка желточного пузырька. Пространство между ними заполнено эмбриональной тканью, получившей название варто-нова студня, содержащего полисахаридные соединения различного происхождения и химической природы. Накопление этих веществ в эмбриональной ткани - вартоновом студне - увеличивается при некоторых патологических состояниях материнского организма, что расценивается как своеобразный защитный биологический барьер, предотвращающий распространение инфекционного заболевания от матери к плоду.

Пуповина состоит из центрального и периферического участков. Центральный участок погружен в водную оболочку, а периферический начинается от околоплодной оболочки и заканчивается в сосудистой.

У жеребят длина пуповины 70... 100 см. Пупочные сосуды прочно сращены с брюшной стенкой, в результате чего они во время родов обрываются вне брюшной полости или у пупочного кольца.

У телят длина пуповины 30...40 см. Пупочные артерии не прирастают к пупочному кольцу, поэтому разрыв их во время родов может произойти в брюшной полости плода. В случае разрыва артерий во влагалище пуповины они втягиваются в брюшную полость. Пупочная вена в связи с прочным прикреплением к пупочному кольцу и после разрыва остается в культе пуповины.

У ягнят и козлят длина пуповины 7... 12 см, а у поросят 20...77 см. В состав пуповины входят одна вена и две артерии. В конце беременности сосуды пуповины перекручиваются и делают до восьми витков.

У плотоядных животных длина пуповины колеблется в зависимости от вида и породы животного: в среднем она составляет 6... 10 см. Пуповина имеет две артерии и две вены, сливающиеся в пупочном кольце. У сук пуповина очень прочная и не разрывается во время родов под влиянием тяжести плода. Ее обычно перекусывает мать.

Пуповина у животных всех видов иннервируется парасимпатической и симпатической нервной системой. Это подтверждает возможность передачи импульса с плода через пуповину и плаценту матери.

Племенное разведение собак Сотская Мария Николаевна

Плацентарный барьер

Плацентарный барьер

Между организмом матери и плодом существует так называемый плацентарный барьер. Его функции направлены на защиту внутренней среды плода от проникновения веществ, циркулирующих в крови матери, не имеющих для плода энергетического и пластического значения и, возможной иммунологической агрессии материнского организма, а также на защиту внутренней среды матери от проникновения веществ, нарушающих ее гомеостаз, из крови плода.

Плацентарный барьер состоит из эпителия трофобласта, синцития, покрывающего ворсинки хориона плаценты, соединительной ткани ворсинок и эндотелия их капилляров. В терминальных ворсинках многочисленные капилляры расположены сразу под синцитием и плацентарным барьером, при этом состоят из двух одноклеточных мембран. Установлено, что в кровь плода из организма матери в основном могут поступать вещества, имеющие низкий молекулярный вес. Имеются данные о прохождении через плацентарный барьер высокомолекулярных веществ, антигенов, бактерий, вирусов, гельминтов. Проникновение высокомолекулярных веществ, антигенов, бактерий наблюдается при патологии беременности, когда функция плацентарного барьера нарушается.

При патологии беременности многие лекарственные вещества, а также продукты нарушенного метаболизма проникают в кровь плода и оказывают на него повреждающее действие.

Плацента связывает плод с организмом матери и состоит из плодной (ворсинчатый хорион) и материнской (децидуальная оболочка) частей (рис. 20–4 и 20–5). В плаценте ворсины хориона, содержащие кровеносные капилляры плода, омываются кровью беременной, циркулирующей в межворсинчатом пространстве. Кровь плода и кровь беременной разделены плацентарным барьером - трофобластом, стромой ворсин и эндотелием капилляров плода. Перенос веществ через плацентарный барьер осуществляется за счёт пассивной диффузии (кислород, углекислый газ, электролиты, моносахариды), активного транспорта (железо, витамин С) или опосредованной переносчиками облегчённой диффузии (глюкоза, Ig).

Рис . 20–5 . Децидуальная оболочка матки и плацента . Полость матки выстилает пристеночная часть децидуальной оболочки. Децидуальная оболочка, обращённая к ворсинчатому хориону, входит в состав плаценты.

Кровоток в плаценте

Пуповина , или пупочный канатик (рис. 20–3, 20–4) - шнуровидное образование, содержащее две пуповинные артерии и одну пуповинную вену, несущие кровь от плода к плаценте и обратно. По пуповинным артериям течёт венозная кровь от плода к ворсинкам хориона в составе плаценты. По вене к плоду притекает артериальная кровь, обогащённая кислородом в кровеносных капиллярах ворсинок. Общий объёмный кровоток через пуповину составляет 125 мл/кг/мин (500 мл/мин).

Артериальная кровь беременной впрыскивается непосредственно в межворсинчатое пространство (лакуны, см. рис. 20–3 и 20–4) под давлением и толчками из примерно сотни расположенных перпендикулярно по отношению к плаценте спиральных артерий. Лакуны полностью сформированной плаценты содержат около 150 мл омывающей ворсинки материнской крови, полностью замещаемой 3–4 раза в минуту. Из межворсинчатого пространства венозная кровь оттекает через расположенные параллельно плаценте венозные сосуды.

Плацентарный барьер . В состав плацентарного барьера (материнская кровь  кровь плода) входят: синцитиотрофобласт  цитотрофобласт  базальная мембрана трофобласта  соединительная ткань ворсинки  базальная мембрана в стенке капилляров ворсинки  эндотелий капилляров ворсинки. Именно через эти структуры происходит обмен между кровью беременной и кровью плода. Именно эти структуры реализуют защитную (в том числе иммунную) функцию плода.

Функции плаценты

Плацента выполняет множество функций, включая транспорт питательных веществ и кислорода от беременной к плоду, удаление продуктов жизнедеятельности плода, синтез белков и гормонов, иммунологическую защиту плода.

Транспортная функция

Перенос кислорода и диоксида углерода происходит путём пассивной диффузии.

O 2 . Парциальное давление кислорода (Po 2) артериальной крови спиральных артериол при pH 7,4 равно 100 мм рт.ст при насыщении Hb кислородом 97,5%. В то же время Po 2 крови в венозной части капилляров плода составляет 23 мм рт.ст. при насыщении Hb кислородом 60%. Хотя Po 2 материнской крови в результате диффузии кислорода быстро уменьшается до 30–35 мм рт.ст., даже этой разницы в 10 мм рт.ст. достаточно для адекватного снабжения кислородом организма плода. Эффективной диффузии кислорода от матери к плоду способствуют дополнительные факторы.

 Hb плода имеет большее сродство к кислороду, чем дефинитивного Hb беременной (кривая диссоциации HbF сдвинута влево). При одинаковых Po 2 Hb плода связывает на 20–50% больше кислорода, чем Hb матери.

 Концентрация Hb в крови плода выше (это увеличивает кислородную ёмкость), чем в крови матери. Таким образом, несмотря на то, что насыщение кислородом крови плода редко превышает 80%, гипоксии тканей плода не возникает.

 pH крови плода ниже pH цельной крови взрослого человека. При увеличении концентрации ионов водорода сродство кислорода к Hb уменьшается (эффект Бор а), поэтому кислород легче переходит из крови матери в ткани плода.

CO 2 диффундирует через структуры плацентарного барьера по направлению концентрационного градиента (примерно 5 мм рт.ст.) между кровью пуповинных артерий (48 мм рт.ст.) и кровью лакун (43 мм рт.ст.). Кроме того, Hb плода имеет меньшее сродство к CO 2 , чем дефинитивный Hb матери.

Мочевина , креатинин , стероидные гормоны , жирные кислоты , билирубин . Их перенос происходит путём простой диффузии, но плацента слабо проницаема для образующихся в печени глюкуронидов билирубина.

Глюкоза - облегчённая диффузия.

Аминокислоты и витамины - активный транспорт.

Белки (например, трансферрин, гормоны, некоторые классы Ig), пептиды , липопротеины - опосредованный рецепторами эндоцитоз.

Электролиты - Na + , K + , Cl – , Ca 2+ , фосфат - пересекают барьер путём диффузии и с помощью активного транспорта.

Иммунологическая защита

 Транспортируемые через плацентарный барьер материнские АТ класса IgG обеспечивают пассивный иммунитет плода.

 Организм беременной не отторгает иммунологически чужеродный плод из-за локального угнетения реакций клеточного иммунитета женщины и отсутствия гликопротеинов главного комплекса гистосовместимости (HLA) в клетках хориона.

 Хорион синтезирует вещества, угнетающие клеточный иммунный ответ (экстракт из синцитиотрофобласта тормозит in vitro размножение клеток иммунной системы беременной).

 В клетках трофобласта не экспрессируются Аг HLA, что обеспечивает защиту фетоплацентарного комплекса от распознавания иммунокомпетентными клетками беременной. Именно поэтому отщеплённые от плаценты участки трофобласта, попадая в лёгкие женщины, не отторгаются. В то же время другие типы клеток в ворсинках плаценты несут на своей поверхности Аг HLA. Трофобласт не содержит также эритроцитарных Аг систем AB0 и Rh.

Детоксикация некоторых ЛС.

Эндокринная функция . Плацента - эндокринный орган. Плацента синтезирует множество гормонов и других биологически активных веществ, имеющих важное значение для нормального течения беременности и развития плода (ХГТ, прогестерон, хорионический соматомаммотропин, фактор роста фибробластов, трансферрин, пролактин, релаксины, кортиколиберин, эстрогены и другие; см. рис. 20–6, а также рис. 20–12 в книге, см. также табл. 18–10).

Хорионический гонадотропин (ХГТ) поддерживает непрерывную секрецию прогестерона в жёлтом теле до тех пор, пока плацента не начнёт синтезировать прогестерон в количестве, достаточном для нормального течения беременности. Активность ХГТ быстро возрастает, удваиваясь каждые 2–3 дня и достигая пика на 80-й день (80 000–100 000 МЕ/л), затем снижается до 10 000–20 000 МЕ/л и остаётся на этом уровне до конца беременности.

Маркёр беременности . ХГТ продуцируют только клетки синцитиотрофобласта. ХГТ можно обнаружить в сыворотке крови беременной через 8–9 дней после оплодотворения. Количество секретируемого ХГТ напрямую связано с массой цитотрофобласта. На ранних сроках беременности это обстоятельство используют для диагностики нормальной и патологической беременности. Содержание ХГТ в крови и в моче беременной можно определить биологическим, иммунологическим и радиологическим методами. Иммунологические (в том числе радиоиммунологические) тесты специфичнее и чувствительнее биологических методов. При снижении концентрации ХГТ вдвое по сравнению с нормальными значениями можно ожидать нарушения имплантации (например, эктопическую беременность или неразвивающуюся маточную беременность). Повышение концентрации ХГТ выше нормальных значений часто связано с многоплодной беременностью или пузырным заносом.

Стимуляция секреции прогестерона жёлтым телом . Важная роль ХГТ заключается в предотвращении регрессии жёлтого тела, что обычно происходит на 12–14-й дни после овуляции. Значительная структурная гомология ХГТ и ЛГ позволяет ХГТ связываться с рецепторами лютеоцитов для ЛГ. Это приводит к продолжению работы жёлтого тела после 14-го дня от момента овуляции, что обеспечивает прогрессирование беременности. Начиная с 9-й недели, синтез прогестерона осуществляет плацента, масса которой к этому сроку позволяет образовывать прогестерон в количестве, достаточном для пролонгирования беременности (рис. 20–6).

Стимуляция синтеза тестостерона клетками Ляйдига у плода мужского пола. К концу I триместра ХГТ стимулирует гонады плода к синтезу стероидных гормонов, необходимых для дифференцировки внутренних и наружных половых органов.

 Синтез и секрецию ХГТ поддерживает секретируемый цитотрофобластом гонадолиберин .

Прогестерон . В первые 6–8 недель беременности главный источник прогестерона - жёлтое тело (содержание в крови беременной 60 нмоль/л). Начиная со II триместра беременности основным источником прогестерона становится плацента (содержание в крови 150 нмоль/л). Жёлтое тело продолжает синтезировать прогестерон, но в последнем триместре беременности плацента вырабатывает его в 30–40 раз больше. Концентрация прогестерона в крови продолжает увеличиваться вплоть до конца беременности (содержание в крови 500 нмоль/л, примерно в 10 раз больше, чем вне беременности), когда плацента синтезирует 250 мг прогестерона в сутки. Для определения содержания прогестерона используют радиоиммунный метод, а также уровень прегнандиола - метаболита прогестерона - хроматографически.

 Прогестерон способствует децидуализации эндометрия.

 Прогестерон, ингибируя синтез Пг и уменьшая чувствительность к окситоцину, угнетает возбудимость миометрия до наступления родов.

 Прогестерон способствует развитию альвеол молочной железы.

Рис . 20 6 . Содержание гормонов в плазме крови при беременности

Эстрогены . При беременности содержание эстрогенов в крови беременной (эстрон, эстрадиол, эстриол) существенно повышено (рис. 20–6) и превышает значения вне беременности примерно в 30 раз. При этом эстриол составляет 90% всех эстрогенов (1,3 нмоль/л на 7-й неделе беременности, 70 нмоль/л к концу беременности). К концу беременности экскреция эстриола с мочой достигает 25–30 мг/сут. Синтез эстриола происходит при интеграции метаболических процессов беременной, плаценты и плода. Большую часть эстрогенов секретирует плацента, но в ней происходит не синтез этих гормонов de novo , а лишь ароматизация стероидных гормонов, синтезированных надпочечниками плода. Эстриол - показатель нормальной жизнедеятельности плода и нормального функционирования плаценты. С диагностическими целями содержание эстриола определяют в периферической крови и суточной моче. Высокие концентрации эстрогена вызывают увеличение мышечной массы матки, размеров молочной железы, наружных половых органов.

Релаксины - гормоны из семейства инсулинов - в течение беременности оказывают расслабляющее действие на миометрий, перед родами приводят к расширению маточного зева и повышению эластичности тканей лонного сочленения.

Соматомаммотропины 1 и 2 (плацентарные лактогены) образуются в плаценте спустя 3 нед после оплодотворения и могут быть определены в сыворотке крови женщины радиоиммунным методом с 6 нед беременности (35 нг/мл, 10 000 нг/мл в конце беременности). Эффекты соматомаммотропинов, как и эффекты гормона роста, опосредуют соматомедины.

Липолиз . Стимулируют липолиз и увеличивают содержание в плазме свободных жирных кислот (энергетический резерв).

Углеводный обмен . Подавляют утилизацию глюкозы и глюконеогенез у беременной.

Инсулиногенное действие . Повышают в плазме крови содержание инсулина, одновременно снижая его эффекты на клетки–мишени.

Молочные железы . Индуцируют (как и пролактин) дифференцировку секреторных отделов.

Пролактин . Во время беременности существует три потенциальных источника пролактина: передняя доля гипофиза матери и плода, децидуальная ткань матки. У небеременной женщины содержание пролактина в крови находится в диапазоне 8–25 нг/мл, при беременности постепенно возрастает до 100 нг/мл к концу беременности. Основная функция пролактина - подготовка молочных желёз к лактации.

Рилизинг гормоны . В плаценте происходит синтез всех известных гипоталамических рилизинг–гормонов и соматостатина (см. табл. 18–10).

Под плацентарным барьером понимают избирательные свойства плаценты, в результате которых одни вещества проникают из крови матери в кровь плода, тогда как другие задерживаются или поступают в его организм после соответствующей биохимической переработки.

Барьер, разделяющий кровь матери и плода в межворсинчатом пространстве, состоит из эпителия трофобласта, или синцития, покрывающего ворсинки, соединительной ткани ворсинок и эндотелия их капилляров.

Барьерная функция плаценты может выполняться только в физиологических условиях. Проницаемость плацентарного барьера для вредных веществ и микробов увеличивается при патологических изменениях плаценты, наступившей в результате повреждения ворсинок микробами и их токсинами. Проницаемость плаценты может также повышаться в связи с истончением синцития при увеличении срока беременности.

Обмен газов (кислорода и др.), а также истинных растворов через плацентарную мембрану происходит по законам осмоса и диффузии. Этому способствует разница парциального давления в крови матери и плода. Белки, жиры, углеводы и другие вещества проникают через плацентарный барьер в форме простейших соединений, образующихся под влиянием ферментативной функции плаценты.

В крови матери и плода создается различная концентрация калия, натрия, фосфора и других веществ. Кровь матери по сравнению с кровью плода богаче белками, нейтральными жирами и глюкозой.

В крови плода больше содержится безбелкового азота, свободных аминокислот, калия, кальция, неорганического фосфора и других веществ.

Плацентарный барьер защищает плод от проникновения вредных веществ лишь частично. Через плаценту могут проникать наркотики, алкоголь, никотин, цианистый калий, сульфаниламиды, хинин, ртуть, мышьяк, йодид калия, антибиотики (пенициллин и стрептомицин), витамины и гормоны.

На проникновение веществ из материнской крови в кровь плода большое влияние оказывает величина молекул. При физиологической беременности через плацентарный барьер в кровь плода могут проникать вещества с молекулярной массой ниже 350. При патологии беременности (токсикозы, ионизирующие излучения и др.) в результате нарушения функции плацентарного барьера могут проникать в кровь плода и высокомолекулярные вещества (антигены, антитела, вирусы, токсины, бактерии, простейшие и гельминты).

Еще по теме Плацентарный барьер:

  1. Плацентарный барьер в анестезиологическом плане. Фармакокинетика и фармакодинамика лекарственных средств, используемых в акушерской анестезиологии
  2. Плацентарная недостаточность и токсикоз беременных. Нарушения маточно-плацентарного и плацентарно-плодного кровообращения